
www.manaraa.com

Valahian Journal of Economic Studies

73

Increasing Productivity through a Better Management
of Business Objects in Economic Applications

Dănuţ-Octavian SIMION

Lumina – The University of South-East Europe, Bucharest, Romania
danut.simion@lumina.org

Abstract
The paper presents the advantages of a better management regarding business

objects in economical applications that are used in the production activity. These business
objects are usually Enterprise Java Objects that represents clients, orders, resources, data
access objects and services used in the logic of the economic applications. The economical
flows are very important within these kind of applications because are dependent of each
other so a good management leads at an increase of productivity and the profit. These
business objects are located in the Business Tier that provides inputs for other tiers and so
it is important that the design and implementation are done by a management plan
according to the business logic. The Business Tier is represented by business objects and
services that allow to store data and to define the business logic of applications. Also the
Business Tier is responsible to process client’s requests and delivers responses according
with the business logic and so his design and implementation is important.

Keywords: Economic applications, Management process, Business Tier, Java
objects integration, Business objects, UML diagram

JEL Classification: O12

 Introduction

The management activity involves a good organization of business flows that are
implemented in economical applications. In these applications The Business Tier manages
all the business objects that represent entities like products, customers, orders, data access
objects and services used in the logic of the economical applications. A better management
of these objects relies on a good design and a rigorous implementation through Java which
is a oriented object programming language that is independent from operating systems
platforms and can integrate business objects in various economical applications. Java
components for Business Tier include different parts like business objects that map entities
according to the specific of each enterprise. The Java programming language can separate
the main tiers for better and easy ways of building business applications. The main tiers of
a business application are Presentation Tier, Business Tier and Integration Tier. Separating
these tiers can dissociate the working processes of the programmers and web designers,
and so the business logic of the applications can be separated from the design work and
different parts of applications could be integrated more easily and the duration of
completing these tasks is shorter [Doug Lea, 2010], [James W. Cooper, 2008]. The

www.manaraa.com

Volume 6 (20) Issue 1 2015

74

Business Tier is referring to client’s access at different components that are structured in
java classes that are customized for each type of business applications and contains
description for actions like orders, supply, purchasing, delivery and other economic
activities.

 1. Model for Business Tier

 Web applications for business help business development for companies that adopt
these technologies in companies that are in various formats can be used in an integrated
way. Current technologies are oriented data types existing within companies, including
those older technologies, DBMS from previous generation, unstructured data, old
applications which do not meet current standards. The main contributions of IT are finding
new ways to access different types of structured data in databases and presenting various
ways to develop Web applications using JAVA technology. These new types of
applications lead to the development of companies by allowing several users to access
shared within their different collections of data, but are possible and open for business
Internet users. For building Web applications, the first step is to identify how to structure
data: structured, semi-structured or unstructured. Structured data found in databases are
managed by DBMS's, semi-structured data files are in XML files and unstructured data
that are in the Office file types. Very important for the business is when the management
of the company knows the amount of data that is present in companies and to inventory
main compartments that produce documents and to establish key information flows. In
general Web applications enable companies to open the web world, or build useful
applications within companies, especially in the exchange of data between departments. If
the data is structured in databases, this makes it possible to transfer them to the DBMS
performance sites, thus centralizing data in the various compartments. Semi-structured data
existing in XML files, involve lower costs for firms and greater flexibility in their
management and creates the possibility of building new Web applications with open-
source technologies (programming languages such as Java, PHP, Perl, etc.). The data in
these files are easily updated, edited, interrogated and especially easy to store in a file
system present on servers that have the operating system like Linux [Doug Lea, 2010],
[James W. Cooper, 2008], [SAP, 2012].

 Important elements in Web applications are data formats, data models, and ways of
transforming XML documents into Java classes, managing XML Web services for SOA
(Service Oriented Architecture), and also using the JavaScript language in Web. Web
instruments are for managing pages and Servlets, JSP’s (Java Server Pages), JSF’s (Java
Server Faces), JSTL’s (Java Server Pages Tag library). There are core facilities such as
libraries, libraries functions, data formatting, and activities like processing XML files and
databases, working with Struts (Framework open source JSP / Servlet), Spring (application
Framework for assembling components of an application via configuration files) and
Hibernate (Java library for ORM - object-relational mapping): dependency injection,
aspect oriented programming; mapping files, sessions and transactions, operations CRUD
(create, read, update and delete) query language HQL (Hibernate Query Language) that is
the basis for Web applications that enable interaction between users and databases.
Connecting users to the database would not be possible without implementing connectivity
drivers that are specific to each DBMS's, included in this technology that is very complex
[Binildas A. Christudas, 2011], [David Geary, 2010], [Doug Lea, 2010]. Among the best
performing drivers are implemented in Java, which offers multiple amenities and

www.manaraa.com

Valahian Journal of Economic Studies

75

possibilities of customization required by different types of Web applications. An
important role in these applications have the Java beans that reflects the database entities,
conduct transactions, user commands running their use in technologies such as Java RMI
(Java Remote Method Invocation - is an API (Application Programming Interface) actions
performed equivalent remote procedure calls), CORBA (Common Object Requesting
Broker Architecture - is a standard defined by the Object Management Group that enables
software components written in different languages to run on different machines that work
together). Java Beans allow separation of the user interface from the application logic (the
unseen - the business model) and thus allow unbundling by web designers programmer’s
activities. There are ways to access data through Web services: standards RPC (Remote
Procedure Call) and XML-RPC (creating a client XML RPC client creating a server with
XML RPC server), SOAP (Simple Object Access Protocol - an XML-based protocol),
PHP ADODB library (database abstraction library for PHP, based on the concept of
ActiveX Data Objects Microsoft). Analyzing C # for Microsoft SQL Server, XML, HTML
can create HTML detailed aspects of Transact-SQL and make web task, XML schemas,
transformations XSLT (Extensible Style sheet Language Transformations), Document
Object Model, HTTP queries, NET Technology, extended stored procedures (Open Data
Services), transact- SQL commands DBCC (Database Console commands for Microsoft
SQL Server) undocumented information schema views. For designing Web applications
are drawn relational schemas, diagrams, detailed documentation, technical specifications,
etc. that can be organized and structured in UML (Unified Modeling Language) - a
universal language that creates software design patterns in object use by software
developers and by UBL (Universal Business language) - universal language of business
which includes XML libraries that shape specific business documents (invoices, orders,
etc.) [David Gallardo, 2009], [Doug Lea, 2010]. An important role in building web
applications has XML files.

 By adding semantic constraints, application languages can be implemented to
build the XML. In particular, XML is used as the specification language for other
languages for building Web applications. There are traditional techniques for processing
XML files, such as the use of programming languages and APIs SAX (Simple API for
XML - a Java API) programming languages and APIs DOM (Document Object Model - a
component API of the Java API for XML) transformation and filtering engines use. Recent
techniques for processing XML files are: Pull Parsing, Non-Extractive Parsing and Data
Binding. SAX is a lexical interface, event-driven, in which a document is read in the way
content is serialized and reported as "callbacks" to the handler object, is used by the user
design. If the XML data is structured, via Java, this language can convert them into Java
classes. Generating classes is made based on validation rules via a compiler XS
MARSHALLING, UNMARSHALLING, so that the data present in Java classes can easily
be used in Web applications and for activities like display, modify, delete and add data. To
use XML files in web applications means important work of transforming XML files. As
the transformation engine and filters are: the XSL (Extensible Style sheet Language) that
can transform XML files for display and printing. XSL-FO (XSL Formatting Objects) is a
declarative language for XML-based page-layout. XSL-FO processor can be used to
convert an XSL-FO document in an XML document that does not, for example PDF.
XSLT (Extensible Style sheet Language Transformations) is a declarative language for
transforming XML documents. An XSLT processor can use an XSLT style sheet to
convert the template data tree represented by an XML document into another tree that can
be serialized as XML, HTML, text or any other format supported by the processor.

www.manaraa.com

Volume 6 (20) Issue 1 2015

76

XQuery is a W3C language query construction and processing XML data. XPATH is a
tree-like DOM (Document Object Model) data models and path expression, language used
for selecting data within XML documents for XSL FO, XSLT and XQuery using XPATH.
XPATH function library should include a selection of XML data [James W. Cooper,
2008], [SAP, 2012]. The management of applications focused on important business
systems such as ERP (Enterprise Resource Planning), CRM (Customer Relationship
Management), WCMS (Web Content Management System), B2B (Business-to-Business)
and other business applications.

To illustrate a Business model it can be used the following example:

Implementing a Business model.
public class Ex1 {
 // Create a session
private BO_Resource_Session session;
 // Class for business object
private static final Class cls1 =
 BO_Resource_Session.class;
 // Constructor for Ex1.
public Ex1() throws BO_Resource_Exception {
 try {
BO_Resource_Session obj_home =
 (BO_Resource_Session_Home) BO_Service_Locator.getInstance().
 getRemoteHome("Resource", cls1);
 BO_session = obj_home.create();
 } catch (BO_Service_Locator_Exception ex) {
 // Business Object Service Locator exception for
 // application exception
 throw new BO_Resource_Exception();
 } catch (BO_Create_Exception ex) {
 throw new BO_Resource_Exception();
 } catch (BO_Remote_Exception ex) {
 throw new BO_Resource_Exception();
 }
 }
 // Constructor for Business Object id
public Ex1(String id)
throws BO_Resource_Exception {
 // connect to the Business Object bean for id parameter
 reconnect(id);
 }
 // Parameter out - ID client
 // to reconnect to the Business object bean
public String get_BO_ID() {
 try {
return BO_Service_Locator.get_BO_Id(session);
 } catch (Exception e) {
 // Throw exception
 }

www.manaraa.com

Valahian Journal of Economic Studies

77

 }
 // Business object method to reconnect using given ID
 public void reconnect_BO(String id) throws BO_Resource_Exception {
 try {
 session =
 (BO_Resource_Session) BO_Service_Locator.getBO_Service(id);
 } catch (BO_Remote_Exception ex) {
 // Business Object Remote exception
 // for application exception
 throw new BO_Resource_Exception();
 }
 }
 // Create a session for the business application
 public BO_Resource_Template_Obj setBO_Current_Resource(String resource_BO_Id)
 throws BO_Resource_Exception {
 try {
 return session.setBO_Current_Resource(BO_resource_Id);
 } catch (BO_Remote_Exception ex) {
 // Business obj service exception for
 // application
 throw new BO_Resource_Exception();
 }
 }
 public BO_Resource_Template_Obj getBO_Resource_Details()
 throws BO_Resource_Exception {
try {
 return session.getBO_Resource_Details();
 } catch (BO_Remote_Exception ex) {
 // Business obj service exception for
 // application
 throw new BO_Resource_Exception();
 }
 }
public void setBO_Resource_Details(BO_Resource_Template_Obj to)
 throws ResourceException {
 try {
 session.setBO_Resource_Details(to);
 } catch (BO_Remote_Exception ex) {
 throw new BO_Resource_Exception();
 }
 }
public void addBO_New_Resource(BO_Resource_TemplateObj to)
 throws BO_Resource_Exception {
 try {
 session.addBO_Resource(to);
 } catch (BO_Remote_Exception ex) {
 throw new BO_Resource_Exception();
 }

www.manaraa.com

Volume 6 (20) Issue 1 2015

78

 }
}
Remote Interface
public interface BO_Resource_Session extends BO_EJB_Object {
public BO_Resource_Template_Obj set_Current_Resource(String resourceBO_Id)
throws BO_Remote_Exception, BO_Resource_Exception;
public BO_Resource_Template_Obj getBO_Resource_Details()
throws BO_Remote_Exception, BO_Resource_Exception;
public void setBO_Resource_Details(BO_Resource_Template_Obj resource)
throws bo_Remote_Exception, BO_Resource_Exception;
public void addBO_Resource(BO_Resource_Template_Obj resource)
throws BO_Remote_Exception, BO_Resource_Exception;
public void removeBO_Resource()
throws BO_Remote_Exception, BO_Resource_Exception;
// Business objects methods
public void addBO_Blockout_Time(Collection BO_blockout_Time)
throws BO_Remote_Exception, BO_Blockout_Time_Exception;
public void updateBO_Blockout_Time(Collection BO_blockout_Time)
throws BO_Remote_Exception, BO_Blockout_Time_Exception;
public void removeBO_Blockout_Time(Collection BO_blockout_Time)
throws BO_Remote_Exception, BO_Blockout_Time_Exception;
public void removeBO_Blockout_Time()
throws BO_Remote_Exception, BO_Blockout_Time_Exception;
// other skill methods
public void addBO_Skill_Sets(Collection BO_skill_Set)
throws BO_Remote_Exception, BO_Skill_Set_Exception;
public void BO_update_Skill_Sets(Collection BO_skill_Set)
throws BO_Remote_Exception, BO_Skill_Set_Exception;
public void BO_remove_Skill_Set(Collection BO_skill_Set)
throws BO_Remote_Exception, BO_Skill_Set_Exception;
 }

2. Business Object

When there is little or no business logic in a business operation, applications will

typically let clients directly access business data in the data store. A presentation tier
component such as a command helper or JSP view, or a business-tier component can
directly access a Data Access Object. In this case, there is no notion of an object model in
the business tier. The application requirements are fulfilled by a procedural
implementation [Binildas A. Christudas, 2011], [James W. Cooper, 2008]. This approach
is acceptable for some applications when the data model closely represents the conceptual
domain model. If there is a conceptual model that exhibits a variety of business behavior
and relationships, implementing such applications using a procedural approach causes the
following problems:

• reusability is reduced and business logic code is duplicated;
• procedure implementations becomes lengthy and complex;
• poor maintainability due to duplication and because business logic is spread

over different modules.

www.manaraa.com

Valahian Journal of Economic Studies

79

Business Objects encapsulate and manage business data, behavior and persistence.
Business Objects help separate persistence logic from business logic. Business Objects
maintain the core business data, and implement the behavior that is common to the entire
application or domain. In an application that uses Business Objects, the client interacts
with the Business Objects, which manage their own persistence using one of the several
persistence strategies. Business Objects implement a reusable layer of business entities that
describe the business domain. A Business Object implements a well-defined business
domain concept and includes business logic and business rules that apply to that domain
concept. Higher-level of business logic that operates on several Business Objects is
implemented in a service layer, using Application Service and Session Façade, to isolate
the object model from clients, preventing direct access.

Implementing a Business Object
public class Ex2 {
private BOCustomer_Data customerBO_Data;

// Contact Info BO is a dependent Business Object
private ContactInfo_BO contactInfo_BO;

public CustomerBO(Customer_Data customer_Data) {
// validate Customer Data values
 this.customer_Data = customer_Data;
 }

public ContactInfoBO getContactInfoBO () {
 if (contactInfoBO == null)
 contactInfoBO = new ContactInfoBO(
 customerData.getContactInfoData());
 return contactInfoBO;
 }}
Business Object - ContactInfoBO
 public class ContactInfoBO {
 private ContactInfoData contactInfoData;

 public ContactInfoBO(ContactInfoData contactInfoData) {
 this.contactInfoData = contactInfoData;
 }
 public BOAddress_Data getBOAddress_Data () {
 return contactInfoBO_Data.getBOAddress_Data();
 }}

3. Conclusions

The management activity for economic applications involves a good understanding
of the business flows and a rigorous implementation of the business objects according to
the specifications. The Business Tier provides the java objects for the Integration Tier and
represents the results from the clients requests that are also processed according with the
business logic of the applications [Binildas A. Christudas, 2011], [Doug Lea, 2010]. The

www.manaraa.com

Volume 6 (20) Issue 1 2015

80

objects for business and the business flows are the most representative components of the
Business Tier and they work together on a Java platform through classes, interfaces,
services and data types definition, so the design and implementation of those is very
important [David Geary, 2010], [James W. Cooper, 2008]. The main benefit in using the
proper design and implementation is the dissociation between the Presentation Tier,
Business Tier and the Integration Tier. The Java programming language improves the ways
of building new business applications and to reuse old resources from previous
applications thus is easy to answer at the specific demands from the clients. Java
applications are more adaptive and robust if it is built on a business logic that implements
the basic design and implementation according with the UML diagrams.

References

Binildas A. Christudas, (2011) “Service Oriented Java Business Integration”, Packt

Publishing
David Gallardo, (2009) “Java design patterns 101”, ibm.com/developerWorks
David Geary, (2010) “Java Design Patterns”, www.javaworld.com
Doug Lea, (2010) “Concurrent programming in Java design principles and patterns”,

Addison Wesley,
James W. Cooper, (2008) “Java Design Patterns at a Glance”, www.javacamp.org

/designPattern/
SAP Co-Innovation Lab, (2012) “Evaluating Selected Java Best Practices for Sap

Business objects Business Intelligence 4 on V sphere”, SAP Corporation
URI: http://javaworld.com/javaworld/
URI: http://www.packtpub.com/service-oriented-java-business-integration/
URI: http://www.sun.com/software/javaenterprisesystem/
URI: http://www.manageability.org/

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.

